
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 24 – Algorithmic Analysis

www.umbc.edu

Last Class We Covered

• Sorting algorithms

– Bubble Sort

– Selection Sort

– Quicksort

• Searching algorithms

– Linear search

– Binary search

2

www.umbc.edu3

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To learn about asymptotic analysis

– What it is

– Why it’s important

– How to calculate it

• To discuss “run time” of algorithms

– Why one algorithm is “better” than another

4

www.umbc.edu

Alphabetizing a Bookshelf

5 Video from https://www.youtube.com/watch?v=WaNLJf8xzC4

www.umbc.edu6

Run Time

www.umbc.edu

Run Time

• An algorithm’s run time is the amount of
“time” it takes for that algorithm to run

– “Time” normally means number of operations or
something similar, and not seconds or minutes

• Run time is shown as an expression, which
updates based on how large the problem is

• Run time shows how an algorithm scales, or
changes with the size of the problem7

www.umbc.edu

Example: Fibonacci Recursion

• Ideally, we want an algorithm that runs in a
reasonable amount of time, no matter how
large the problem

• Remember the recursive Fibonacci program?

– It runs within one second for smaller numbers

– But the larger the number we ask for, the longer
and longer it takes

8

www.umbc.edu

Fibonacci Recursion
python fibEx.py (with num < 30):

< 1 second

python fibEx.py (with num = 30):

2 seconds

python fibEx.py (with num = 35):

8 seconds

python fibEx.py (with num = 40):

76 seconds

9

www.umbc.edu

Fibonacci Recursion
python fibEx.py (with num = 50):

Guess!

9,493 seconds

2 hours, 38 minutes, 13 seconds!!!

10

www.umbc.edu

Run Time for Linear Search

• Say we have a list that does not contain what
we’re looking for.

• How many things in the list does linear search
have to look at for it to figure out the item’s
not there for a list of 8 things?

• 16 things?

• 32 things?

11

www.umbc.edu

Run Time for Binary Search

• Say we have a list that does not contain what
we’re looking for.

• What about for binary search?

– How many things does it have to look at to figure
out the item’s not there for a list of 8 things?

– 16 things?

– 32 things?

• Notice anything different?

12

www.umbc.edu

Different Run Times

• These algorithms scale differently!

– Linear search does an amount of work
equal to the number of items in the list

– Binary search does an amount of work
equal to the log2 of the numbers in the list!

• By the way, log2(x) is basically asking “2 to what
power equals x?” (normally shown as lg(x))

– This is the same as saying, “how many times
must we divide x in half before we hit 1?”

13

www.umbc.edu

Bubble Sort Run Time

• For a list of size N, how much work do we do for
a single pass?
– N

• How many passes will we have to do?

– N

• What is the run time of Bubble Sort?
– N2

14

www.umbc.edu

Selection Sort Run Time

• What is the run time of finding the lowest
number in a list?

• For a list of size N, what is the worst case
number of elements you’d have to look
through to find the min?

• N

15

www.umbc.edu

Selection Sort Run Time

• For a list of size N, how many times would we
have to find the min to sort the list?

• N

• What is the run time of this sorting algorithm?

• N2

16

www.umbc.edu

Quicksort Run Time

• For a list of size N, how many steps does it take
to move everything less than the last number to
the left and everything greater than the last
number to the right?

• N

17

www.umbc.edu

Quicksort Run Time

• How many times will the algorithm divide the
list in half?

• lg(N)

• What is the run time of Quicksort?

• N * lg(N)

18

www.umbc.edu

Different Run Times

• As our list gets bigger and bigger,
which of the search algorithms is faster?

– Linear or binary search?

• How much faster is binary search?

– A lot!

– But exactly how much is “a lot”?

19

www.umbc.edu20

Asymptotic Analysis

www.umbc.edu

What is “Big O” Notation?

• Big O notation is a concept in Computer Science

– Used to describe the complexity
(or performance) of an algorithm

• Big O describes the worst-case scenario

– Big Omega (Ω) describes the best-case

– Big Theta (Θ) is used when the best and worst
case scenarios are the same

21

www.umbc.edu

Asymptotic Analysis

• For a list of size N, linear search does N operations.
So we say it is O(N) (pronounced “big Oh of n”)

• For a list of size N, binary search does lg(N)
operations, so we say it is O(lg(N))

• The function inside the O() parentheses indicates
how fast the algorithm scales

22

www.umbc.edu

Worst Case vs Best Case

• Why differentiate between the two?

• Think back to selection sort

– What is the best case for run time?

– What is the worst case for run time?

• They’re the same!

– Always have to find each minimum by looking
through the entire list every time – Θ(N2)

23

www.umbc.edu

Bubble Sort Run Times

• What about bubble sort?

– What is the best case for run time?

– What is the worst case for run time?

• Very different!

– Best case, everything is already sorted – Ω(N)

– Worst case, it’s completely backwards – O(N2)

24

www.umbc.edu

Quicksort Run Times

• What about quicksort?

– Depends on what the “hinge” or “partition” is

• This determines how many times we split

– But each split, we’ll need to compare each item
to the hinge in their respective part: O(N)

• Best case, hinge is exact center – Ω(N*lgN)

• Worst case, it’s an “edge” item – O(N2)

25

www.umbc.edu

Worst-case vs Best-case

• This is why, even though all three sorting
algorithms have the same run times...

– Quicksort often runs very, very quickly

– Bubble Sort often runs much faster than Selection

• How does this apply to linear search and
binary search? What are the best and worst
run times for these?

26

www.umbc.edu

Search Run Times

• Linear search:

– Best case: Ω(1)

– Worst case: O(N)

• Binary search:

– Best case: Ω(1)

– Worst case: O(lg(N))

27

www.umbc.edu

Why Care?

28

www.umbc.edu

Why Care?

29

www.umbc.edu

Why Care?

30

www.umbc.edu

Why Care?

31

19,311,800

www.umbc.edu

Why Care?

32

337,407,000,000,000,000

www.umbc.edu

Why Care?
• For large problems, there’s a huge difference!

• If we can do 1,000,000 operations per second,
and the list is 337.4 quadrillion items

– Binary search takes 0.000058 seconds

– Linear search takes 337,407,000,000 seconds

5,623,450,000 minutes

93,724,166 hours

3,905,173 days

10,699 years
33

www.umbc.edu

Announcements

• Final is when?

• Project 3 out now

– Design due on Friday, May 5th @ 8:59:59 PM

– Project due on Friday, May 12th @ 8:59:59 PM

• Survey #3 also out – follow link in announcement

• Now we’ll talk about SEEQs

34

Friday, May 19th from 6 to 8 PM

www.umbc.edu35

SEEQs

www.umbc.edu

The Student Evaluation of Educational Quality (SEEQ) is a
standardized course evaluation instrument used to provide
measures of an instructor’s teaching effectiveness. The
results of this questionnaire will be used by promotion and
tenure committees as part of the instructor’s evaluation.

The Direct Instructor Feedback Forms (DIFFs) were
designed to provide feedback to instructors and they are
not intended for use by promotion and tenure committees.

The responses to the SEEQ and the DIFFs will be kept
confidential and will not be distributed until final grades
are in.

36

www.umbc.edu

Completing SEEQs

• Please take the time now, if you haven’t
already, to complete the SEEQ online

• You can access it via the link in your email, or
via Blackboard

This is the part
I will get to see

37

